Conditions of Matrices in Discrete Tension Spline Approximations of DMBVP
نویسندگان
چکیده
Some splines can be defined as solutions of differential multi-point boundary value problems (DMBVP). In the numerical treatment of DMBVP, the differential operator is discretized by finite differences. We consider one dimensional discrete hyperbolic tension spline introduced in [2], and the associated specially structured pentadiagonal linear system. Error in direct methods for the solution of this linear system depends on condition numbers of corresponding matrices. If the chosen mesh is uniform, the system matrix is symmetric and positive definite, and it is easy to compute both, lower and upper bound, for its condition. In the more interesting non-uniform case, matrix is not symmetric, but in some circumstances we can nevertheless find an upper bound on its condition number.
منابع مشابه
An Approximate Solution of Functionally Graded Timoshenko Beam Using B-Spline Collocation Method
Collocation methods are popular in providing numerical approximations to complicated governing equations owing to their simplicity in implementation. However, point collocation methods have limitations regarding accuracy and have been modified upon with the application of B-spline approximations. The present study reports the stress and deformation behavior of shear deformable functionally grad...
متن کاملA note on approximation conditions, standard triangularizability and a power set topology
The main result of this article is that for collections of entry-wise non-negative matrices the property of possessing a standard triangularization is stable under approximation. The methodology introduced to prove this result allows us to offer quick proofs of the corresponding results of [B. R. Yahaghi, Near triangularizability implies triangularizability, Canad. Math. Bull. 47, (2004), no. 2...
متن کاملNonlinear Approximation Using Gaussian Kernels
It is well-known that non-linear approximation has an advantage over linear schemes in the sense that it provides comparable approximation rates to those of the linear schemes, but to a larger class of approximands. This was established for spline approximations and for wavelet approximations, and more recently for homogeneous radial basis function (surface spline) approximations. However, no s...
متن کاملExact Implementation of Multiple Initial Conditions in the DQ Solution of Higher-Order ODEs
The differential quadrature method (DQM) is one of the most elegant and useful approximate methods for solving initial and/or boundary value problems. It is easy to use and also straightforward to implement. However, the conventional DQM is well-known to have some difficulty in implementing multiple initial and/or boundary conditions at a given discrete point. To overcome this difficulty, this ...
متن کاملBiorthogonal cubic Hermite spline multiwavelets on the interval for solving the fractional optimal control problems
In this paper, a new numerical method for solving fractional optimal control problems (FOCPs) is presented. The fractional derivative in the dynamic system is described in the Caputo sense. The method is based upon biorthogonal cubic Hermite spline multiwavelets approximations. The properties of biorthogonal multiwavelets are first given. The operational matrix of fractional Riemann-Lioville in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006